Задания
Версия для печати и копирования в MS Word
Задание № 375
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс 4x минус 20, зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби боль­ше 0 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 6;7 пра­вая квад­рат­ная скоб­ка равно:

1) 7
2) 9
3) 6
4) 4
5) 5
Спрятать решение

Ре­ше­ние.

Решим не­ра­вен­ство ме­то­дом ин­тер­ва­лов:

 дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс 4x минус 20, зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби боль­ше 0 рав­но­силь­но дробь: чис­ли­тель: x в квад­ра­те минус 4x плюс 4 плюс 4x минус 20, зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби боль­ше 0 рав­но­силь­но дробь: чис­ли­тель: x в квад­ра­те минус 16, зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби боль­ше 0 рав­но­силь­но дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби боль­ше 0.

Корни чис­ли­те­ля: x=\pm4. Корни зна­ме­на­те­ля x=7 крат­но­сти 2:

На про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 6;7 пра­вая квад­рат­ная скоб­ка лежат сле­ду­ю­щие целые ре­ше­ния: x= минус 6, x= минус 5, x=5, x=6. Сле­до­ва­тель­но, су­ще­ству­ет толь­ко 4 целых ре­ше­ния.

 

Пра­виль­ный ответ ука­зан под но­ме­ром 4.


Аналоги к заданию № 45: 285 345 375 ... Все

Источник: Цен­тра­ли­зо­ван­ное те­сти­ро­ва­ние по ма­те­ма­ти­ке, 2011
Сложность: II